3D打印机技术总结-公司动态-非凡士

新闻中心News Center

新闻中心-公司动态

3D打印机技术总结

2022-02-10

1、选择性激光烧结(SLS) 

其原理是,激光选择地逐层烧结固体粉末(材料除了主体金属粉末外还需要添加一定比例 的熔点较低的粘结剂粉末,粘结剂粉末一般为熔点较低的金属粉末或是有机树脂等),同 时将烧结成型的粉末叠加至已固化的粉末层上,最终形成所需形状的零件。这种技术依赖 的核心器件是红外激光器,能源工作环境为氩气或氮气气氛。具有制造工艺简单、生产效 率较高、成型材料种类多、材料利用率高、成品用途广泛、无需考虑支撑系统等优势。缺 点是由于粘接剂的作用,实体存在孔隙,力学性能差,需要高温重熔再加工。此外,当产 品存储时间过长时,会因为内应力释放而变形,表面质量一般。运营成本较高,设备费用 较贵。 

2AFAB44C-58CE-40e6-9713-E838B7E32B38.png

2、选择性激光熔化(SLM) 

该技术与 SLS 技术主要区别在于 SLM 通过激光器对金属粉末直接进行热作用,不依赖粘结 剂粉末,金属粉末通过熔化、凝固从而达到冶金结合的效果,最终获得所设计结构的金属 零件。SLM 技术为了更好的融化金属需要使用金属有较高吸收率的激光束,所以一般使用 的是 Nd-YAG 激光器(1.064 微米)和光纤激光器(1.09 微米)等波长较短的激光束。优 点是 SLM 技术使用纯金属粉末,成型的金属零件致密度可达接近 100%;抗拉强度等机械性 能指标优于铸件,甚至可达到锻件水平;致密度力学性能与成型精度上都要比SLS好一些。 另一种技术——选区电子束熔炼技术(EBM)与 SLM 技术相似,不同之处是 EBM 利用高速 电子束流的动能转换为热能作为热源来进行金属熔炼,工作环境为真空。电子束做热源, 相比于激光可实现更高的熔炼温度,且炉子功率和加热速度可调,能熔炼难熔金属,并且 能将不同的金属熔合。但是也存在金属收得率较低、比电耗较大、严格真空要求等缺点。 

B6ED6F5E-EA37-4677-8731-DE11B3477530.png

3、定向能量沉积(DED) 这项技术工作原理类似 SLM

由激光或其他能量源在沉积区域产生熔池并高速移动,材料 以粉末或丝状通过喷嘴直接喷射到高功率激光器的焦点上,熔化后逐层沉积,形成所需零 件。相比于 SLM 技术的优势之处在于,第一,该技术允许激光头和工件更灵活地移动,从 而增加设计自由度。第二,在 DED 设备运行中,惰性气体直接从激光头流出并包围粉末流 和熔池,不依赖于充满惰性气体的压力室,3D 打印加工过程可以立即开始,大大压缩了生 产准备时间。第三,能生产大型零件,且不需要任何支撑结构。缺点在于熔化过程不如 SLM 精确,成品部件通常必须进行再加工。 

4、微喷射粘结技术(3DP)

 3DP 技术与 SLS 工艺类似,采用陶瓷、石膏粉末成形。不同之处在于,材料粉末不是通过 激光器烧结固体粉末连接起来的,而是通过粘接剂打印头沿零件截面路径喷射透明或者彩 色粘结剂并将粉末凝固,其他位置的粉末作为支撑,之后再铺设一层粉末,循环该过程直 至打印完成。3DP 技术主要依赖的核心器件是粘接剂打印头,优点在于成型材料范围广, 能耗小,设备体积小。但是缺点也显而易见,粘接剂粘接的零件强度较低,需要后处理, 产品疏松多孔。 以色列 Objet 公司研制的 Polyjet3D 技术与 3DP 类似,不过喷射的不是粘合剂而是光敏聚 合成型材料。目前,Polyjet3D 技术已经成为美国 Stratasys 公司的亮点。首先,多种基础 材料可在机外混合,组合可得到性能更为优异的新材料。其次,产品精确度可达 16 微米 的分辨率,可获得流畅且非常精细的部件与模型。最后,该技术用途广泛,可适用于不同 几何形状、机械性能及颜色部件的打印,例如:Polyjet Matrix 技术还支持多种型号、多种 颜色材料同时喷射。

 5、熔积成型法(FDM) 

其工作原理是将丝状原材料(一般为热塑性材料)通过送丝机送入热熔喷头,然后在喷头 内加热熔化,熔化的热塑材料丝通过喷头挤出,挤压头沿零件的每一截面的轮廓准确运动, 挤出半流动的热塑材料沉积固化成精确的实际部件薄层,覆盖于已建造的零件之上,这样 逐层由底到顶地堆积成一个实体模型或零件。 该项技术主要依赖微细喷嘴(直径一般为 0.2~0.6mm)以及加热器(保持半流动成型材 料的温度刚好在熔点之上 1℃)。

其优点是 1、无需激光器等贵重原件,成本低、速度快。 2、对使用环境没有限制,可以放在办公室或者家庭环境使用,维护简单、体积小无污染 3、材料易更换、强度韧性较高,极大地缩短了产品开发周期,从而能够快速响应市场变 化,满足顾客的个性化需求。但是也存在零件精度低以及难以形成复杂构件和大型零件等 缺陷。 

0042F9E0-02FF-425c-B3AB-2FBE094E8B9E.png

6、分层实体制造法(LOM) 

这种方法以片材(如纸或塑料薄膜等)为原材料,根据计算机扫描得出的零件横截面,通 过激光裁剪,将背面涂有热熔胶的片材按零件的轮廓裁剪,之后将裁剪好的片层叠加至已 裁好的片层上,利用热压装置将其粘结在一起,然后再进行下一层零件横截面的裁剪、粘 合,最终形成实体零件。 LOM 技术主要依赖热熔胶的性能,具有模型支撑性好,废料易剥离,制件尺寸大,成本 低,效率高等优点。缺点是抗拉强度和弹性差,不能制造中空件;受制于材料影响,利用 LOM 技术打印的零件易吸湿膨胀,表面有台阶纹。

7、立体光固化成型法(SLA)

 SLA 技术的原理是,在计算机控制下,紫外激光按零件各分层截面数据对液态光敏树脂表 面逐点扫描,使被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层,一 层层固化直到整个零件制作完毕。该技术主要依赖紫外激光器和适合的光敏材料。 一方面,液态树脂材料成型,固化方式由点到线,由线到面,制作的产品精度较高,表面 质量较好。另一方面,树脂类材料本身存在一些缺陷,例如:强度,刚度,耐热性有限, 不利于长时间保存,树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。虽然 SLA 技术发展较早,目前较为成熟,但是 SLA 设备造价依旧高昂,维护和使用成本高, 而且需要设计工件的支撑结构。 国际标准化组织辖下增材制造技术委员会发布 ISO/ASTM 52900:2015 标准将增材技术 分为 7 大类,分别是:立体光固化(SLA)、粘结剂喷射(3DP)、定向能量沉积(DED)、薄 材叠层(LOM)、材料挤出(FDM)、材料喷射(PloyJet)、粉末床熔融(SLM、SLS、EBM)。 


end

上一篇:3D打印行业有望从导入期进入快速成长期

下一篇:非凡士致敬2021

微信二维码

微博二维码